martes, 17 de septiembre de 2013


EL SILOGISMO
IV PERIODO
El silogismo es una forma de razonamiento deductivo que consta de dos proposiciones como premisas y otra como conclusión, siendo la última una inferencia necesariamente deductiva de las otras dos. Fue formulado por primera vez por Aristóteles, en su obra lógica recopilada como El Organon, de sus libros conocidos como Primeros Analíticos
Aristóteles consideraba la lógica como lógica de relación de términos. Los términos se unen o separan en los juicios. Los juicios aristotélicos son considerados desde el punto de vista de unión o separación de dos términos, un sujeto y un predicado. Hoy se hablaría de proposiciones.
La diferencia entre juicio y proposición es importante. La proposición afirma un hecho como un todo, que es o no es, como contenido lógico del conocimiento. El juicio, en cambio, atribuye un predicado a un sujeto lógico del conocimiento. Esto tiene su importancia en el concepto mismo del contenido de uno y otra, especialmente en los casos de negación, como se ve en la problemática de la lógica silogística.
Mantenemos aquí la denominación de juicio por ser lo más acorde con lo tradicional, teniendo en cuenta que este tipo de lógica, como tal, está en claro desuso, sustituida por la lógica simbólica en la que esta lógica es interpretada como lógica de clases. Ver cálculo lógico.
La relación entre los términos de un juicio, al ser comparado con un tercero que hace de "término medio", hace posible la aparición de las posibles conclusiones. Así pues, el silogismo consta de dos juicios, premisa mayor y premisa menor, en los que se comparan tres términos, de cuya comparación se obtiene un nuevo juicio como conclusión.
La lógica trata de establecer las leyes que garantizan que, de la verdad de los juicios comparados (premisas), se pueda obtener con garantía de verdad un nuevo juicio verdadero (conclusión).

Los juicios aristotélicos: Definición y elementos del silogismo

El juicio aristotélico considera la relación entre dos términos: un Sujeto, S, y un predicado, P.
Los términos pueden ser tomados en su extensión universal: abarca a todos los miembros a los cuales representa el concepto. O en su extensión particular: cuando sólo se refiere a algunos.
Los juicios por la extensión en la que es tomado el término sujeto, como criterio de cantidad, pueden ser:
UNIVERSALES: Todo S es P
PARTICULARES: Algunos S son P
Nota: Los nombres propios tienen extensión universal; pues el uno, como único, equivale a todos.
La relación entre los términos puede ser asimismo:
AFIRMATIVOS: De unión: S es P.
NEGATIVOS: De separación: S es no-P.
Nota: El predicado de una afirmación siempre tiene extensión particular, y el predicado de una negación está tomado en su extensión universal. Cuando un concepto, sujeto o predicado, está tomado en toda su extensión se dice que está distribuido; cuando no, se dice que está no distribuido.
Según el criterio de cantidad y cualidad, resulta la siguiente clasificación de los juicios:
 
 
CLASE
DENOMINACIÓN
ESQUEMA
EXPRESIÓN-EJEMPLO
Extensión de los términos
A
Universal Afirmativo
Todo S es P
Todos los hombres son mortales
S: Universal P: Particular
E
Universal Negativo
Ningún S es P[]
Ningún hombre es mortal
S: Universal P: Universal
I
Particular afirmativo
Algún S es P
Algún hombre es mortal
S: Particular P: Particular
O
Particular Negativo
Algún S es no-P[]
Algún hombre es no-mortal[7]
S: Particular P: Universal
 
ANTECEDENTE = Dos premisas:
Premisa mayor, en la que se encuentra el término mayor, que es el predicado de la conclusión, que se representa como P.
Premisa menor, en la que se encuentra el término menor, que es el sujeto de la conclusión, que se representa como S.
Entre ambas se realiza la comparación del término sujeto y el término predicado con respecto al término Medio, que se representa como M.
CONSECUENTE = Una conclusión:
En la que se establece la relación entre el término Sujeto S, y el término Predicado P.
TÉRMINOS:
Término mayor: Es el predicado de la conclusión. La premisa en la que se encuentra se llama Premisa mayor. Se representa como P.
Término menor: Es el sujeto de la conclusión. La premisa en la que se encuentra se llama Premisa menor. Se representa como S.
Término medio: Que sirve de comparación (tertium comparationis) y no puede estar en la conclusión. Se representa como M.
 Reglas del silogismo

Reglas para los términos

+ El silogismo no puede tener más de tres términos.
Esta ley se limita a cumplir la estructura misma del silogismo: La comparación de dos términos con un tercero. Aunque la regla es clara, su aplicación no siempre lo es. Es lo que algunos llaman silogismo de cuatro patas. Consideremos el siguiente silogismo:
Todos los hombres nacen libres
Ninguna mujer es un hombre
Por tanto, ninguna mujer nació libre
En la primera premisa estamos hablando de hombres como especie del género homo , y en la segunda estamos hablando de hombre como varón. Este silogismo es de todo punto inválido, aunque siga una forma aparentemente válida.
+ Los términos no deben tener mayor extensión en la conclusión que en las premisas.
Por la misma estructura del silogismo; únicamente podremos obtener conclusiones acerca que lo que hemos comparado en las premisas.
+ El término medio no puede entrar en la conclusión.
Por la misma estructura del silogismo la función del término medio es servir de intermediario, como término de la comparación.
+ El término medio ha de tomarse en su extensión universal por lo menos en una de las premisas.     
Para que la comparación sea tal, es necesario que el término medio sea comparado en su totalidad. De otra forma, podría ser comparado un término con una parte y el otro con la otra, constituyéndose en realidad entonces un silogismo de cuatro términos.
Todos los andaluces son españoles.
Algunos españoles son gallegos.
Por tanto, algunos gallegos son andaluces
Lo que evidentemente no es un modo válido, puesto que "españoles" en la premisa mayor al ser predicado de una afirmativa está tomado en su extensión particular.

Reglas de las premisas

- De dos premisas negativas no puede obtenerse conclusión alguna.
Dos premisas negativas no se adaptan a la estructura del silogismo, ya que si negamos S de M, y P de M, no sabemos qué relación puede haber entre S y P. Para establecer la relación, por lo menos uno de los términos tiene que identificarse con M. Por tanto una de las dos premisas tiene que ser afirmativa.
- De dos premisas afirmativas no puede sacarse una conclusión negativa.
En efecto, si S se identifica con M, y P también se identifica con M, no tiene sentido establecer una relación negativa con entre S y P. La conclusión será afirmativa.
- La conclusión siempre sigue la peor parte. Entendiendo por peor parte, la negativa respecto a la afirmativa y lo particular respecto a lo universal.
Veamos los dos casos separadamente:
a) Conclusión negativa de una premisa afirmativa y la otra negativa.
Si se afirma una relación entre dos términos (X, M), pero se niega la de uno de ellos con otro (Y, M), siendo M el término medio, no puede haber más conclusión que negar la relación que pueda haber entre el primero (X) y el último (Y) siendo uno sujeto y el otro predicado de la conclusión.
b) Conclusión particular de una premisa universal y otra particular (teniendo en cuenta que dos premisas particulares no puede ser, como veremos en la regla siguiente).
Pueden darse dos casos: Que una sea afirmativa y la otra negativa, o que las dos sean afirmativas.
1º) Dos afirmativas. (Tenemos que recordar que el Predicado de una afirmativa está tomado en su extensión particular, y el Predicado de una negativa en su extensión universal).
Al ser las dos afirmativas sus predicados son particulares. El término de la Universal tiene necesariamente que ser el Término Medio, la conclusión tiene que tener un sujeto particular.
2º) Una afirmativa y otra negativa: Tiene que haber dos términos universales. Uno de ellos tiene que ser el término medio, el otro tiene que ser el predicado de la conclusión, pues la conclusión tendrá que ser negativa, (caso a) de esta misma regla). Por tanto el término que queda será el sujeto de la conclusión con extensión particular.
- De dos premisas particulares no se saca conclusión.
También tiene dos casos posibles: que una sea afirmativa y la otra negativa o que las dos sean afirmativas.
a) Afirmativa y negativa: Algún A es B - Algún A no es C.
Sólo hay un término universal que es el predicado de la negativa, que por tanto tiene que ser el Término Medio. La conclusión tendrá que ser negativa (caso a) de la regla anterior), y por tanto el predicado tendrá que ser universal, y no puede ser el Término Medio por tanto no puede haber conclusión.
b) Dos afirmativas: Algún A es B - Algún A es C.
Los tres términos son particulares, y por tanto no puede haber Término medio con extensión universal, y por tanto no hay conclusión posible.
 
 
 
 
 
 
 
 
 
 
 
 

No hay comentarios:

Publicar un comentario